Optimal Stopping Rule for the No-Information Duration Problem with Random Horizon
نویسندگان
چکیده
منابع مشابه
Optimal Stopping Problem for Stochastic Differential Equations with Random Coefficients
An optimal stopping problem for stochastic differential equations with random coefficients is considered. The dynamic programming principle leads to a Hamiltion–Jacobi–Bellman equation, which, for the current case, is a backward stochastic partial differential variational inequality (BSPDVI, for short) for the value function. Well-posedness of such a BSPDVI is established, and a verification th...
متن کاملOptimal stopping with private information
Many economic situations are modeled as stopping problems. Examples are timing of market entry decisions, search, and irreversible investment. We analyze a principalagent problem where the principal and the agent have di erent preferences over stopping rules. The agent privately observes a signal that in uences his own and the principal's payo . Based on his observation the agent decides when t...
متن کاملThe Problem of Optimal Stopping
The problem of Optimal Stopping is of fundamental importance for sequential analysis, for the detection of signals in a background of noise, and also for pricing American-type options in the modern theory of finance. We shall review in this talk two relatively recent approaches to this problem: the deterministic or “pathwise” approach of Davis & Karatzas (1994), and the “integral representation...
متن کاملA Metacognitive Stopping Rule for Problem Solving
Although people expect to improve by investing effort in solving a problem, several studies have found negative timeconfidence correlations in various problem-solving tasks. The present study employed the metacognitive approach to illuminate why, despite lengthy thinking, people provide solutions in which they have only low confidence. According to the proposed Diminishing Criterion Model (DCM)...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Probability
سال: 2013
ISSN: 0001-8678,1475-6064
DOI: 10.1017/s0001867800006753